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We study numerically the tortuosity-porosity relation in a microscopic model of a porous medium arranged
as a collection of freely overlapping squares. It is demonstrated that the finite-size, slow relaxation and
discretization errors, which were ignored in previous studies, may cause significant underestimation of tortu-
osity. The simple tortuosity calculation method proposed here eliminates the need for using complicated,
weighted averages. The numerical results presented here are in good agreement with an empirical relation
between tortuosity �T� and porosity ��� given by T−1� ln �, that was found by others experimentally in
granule packings and sediments. This relation can be also written as T−1�RS /� with R and S denoting the
hydraulic radius of granules and the specific surface area, respectively. Applicability of these relations appears
to be restricted to porous systems of randomly distributed obstacles of equal shape and size.
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I. INTRODUCTION

In the low Reynolds number regime, flow through a po-
rous matrix is governed by Darcy’s law that links the fluid
flux �discharge per unit area� q with the applied pressure
gradient �P by the linear relation

q = −
k

�
� P , �1�

where � is the dynamic viscosity of the fluid and k is a
proportionality constant known as permeability �1�. To a
large extent, the proper description of the fluid flow through
a porous medium depends on precise relations between the
physical properties involved such as permeability and poros-
ity ���. In particular, much attention has been paid to deriv-
ing relations between k and � �2�. In 1927 Kozeny devel-
oped a simple capillary model for a porous medium, and
proposed the relation

k = c0
�3

S2 , �2�

where S is the specific surface area �the ratio of the total
interstitial surface area of the voids and pores to the bulk
volume� and c0 is a dimensionless Kozeny constant that de-
pends on the channel geometry �1�. Unfortunately, Kozeny’s
formula is not universal and does not hold for complicated
porous geometries �1�. For example, it does not take into
account pore connectivity and the fact that the specific sur-
face area can be increased to an arbitrarily large value by
removing only a fraction of the material to roughen the po-
rous matrix surface in a fractal-like manner. On a purely
physical ground, namely, one would expect that removal of
the material from a porous matrix would increase its perme-
ability, whereas Kozeny’s formula predicts just the opposite
�3�.

One of the most widely accepted attempts to generalize
relation �2� was proposed by Carman �1,4,5�, who noticed
that the streamlines in a porous medium are far from being
completely straight and parallel to each other. This effect can

be described by a dimensionless parameter T called hydrau-
lic tortuosity,

T =
���
L

� 1, �3�

where ��� is the average length of the fluid paths and L is the
geometrical length of the sample. Using the tortuosity,
Kozeny’s relation �3� can be generalized to �1�

k = c0
�3

T2S2 . �4�

By fitting experimental data, Carman concluded that T2 is a
constant factor ��5 /2� over a wide range of porosities. Later
it was found that T2 does vary with �, and can be as large as
50 for low porosity media �6,7�.

Furthermore, it was realized that elongation of streamlines
not only affects the hydraulic discharge, but also mediates
other types of transport phenomena in the porous medium.
This resulted in introducing several distinctive, experimen-
tally measurable tortuosities obtained from a particular trans-
port process, leading to diffusive �8,9�, electrical �9–11�, and
acoustic �11� tortuosity definitions. There were also further
theoretical attempts to define tortuosity �1,5,12�. However,
all these tortuosities, in general, differ from each other and
except for some very simple models �5,6,13�, there is no
clear consensus on the relation between them. Besides, in the
literature different quantities, including T−1, T−2, and T2 �1,5�
have been used to denote tortuosity. Hence, to avoid confu-
sion, here we define tortuosity through Eq. �3�.

It has long since been known that flow through a porous
medium depends on many factors such as porosity, tortuos-
ity, granule shape and size distribution, saturation, Reynolds
number, etc. With this many numbers of independent param-
eters, it is difficult to analyze the transport phenomena in a
porous medium. Hence, it is essential to depart from simpler
systems with a limited number of well-defined control pa-
rameters. Historically, the most successful theoretical meth-
ods of studying flows through porous media, e.g., the effec-
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tive medium approximation �14,15�, used a continuous
approach with space-averaged variables �1,15,16�. However,
more recent advances in the subject, particularly those com-
ing from the percolation theory and computer simulations
�16,17� show that the studies on a finer, microscopic level are
of equally great importance. Therefore, in this paper we in-
vestigate the hydraulic tortuosity �as defined in Eq. �3�� in a
creeping flow through a porous region constructed by a two-
dimensional lattice system with uniformly and randomly dis-
tributed, freely overlapping solid squares. This model, first
used by Koponen et al. �12�, is simple enough to allow a
numerical solution with the advantage of having porosity ���
as the only control parameter.

Using the lattice gas automata �LGA� method, Koponen
et al. �12� solved the flow equations for a porosity range of
�� �0.5,1�, and concluded that

T = p�1 − �� + 1, �5�

where p is a fitting parameter. However, later they found this
relation not being consistent with the results obtained for the
porosity range �� �0.4,0.5�, and suggested �18� to replace it
with

T = p
�1 − ��

�� − �c�m + 1, �6�

in which �c�0.33 was used as the percolation threshold
while p and m are some empirical parameters. Still, as an ad
hoc formula with two fitting parameters, this relation cannot
be considered a universal law. In addition, the data used to
derive Eq. �6� suffer from systematic errors, as neither the
impact of a finite system size nor the effect of the space
discretization were taken into account.

Obviously, there is no universal relationship between tor-
tuosity and porosity. However, for some special classes of
porous media this link can exist. The aim of this paper is to
carry out a detailed numerical simulation of the tortuosity-
porosity relation in the model defined above, which is a rela-
tively simple representative of the class of porous systems
made of randomly distributed identical objects. We present a
detailed analysis of various numerical effects influencing the
accuracy of numerical computations. Because such an analy-
sis requires large computational times and system sizes, it
has often been omitted, especially in 3D simulations. How-
ever, we show that this neglect leads to serious errors. In
addition, we provide a simplified algorithm for T calculation
without the need for implementing complicated, weighted
averages of streamline lengths.

The structure of the paper is as follows. Section II speci-
fies the model and the numerical techniques used. Special
attention is paid to the description of the nontrivial numerical
technique for the tortuosity. Main results, including a de-
tailed numerical error and finite-size analysis are provided in
Sec. III. Finally, the results are discussed in Sec. IV.

II. MODEL

A. General description

The system of interest consists of a square lattice L�L
lattice units �l.u.� in which a number of identical solid

squares �a�a l.u.� have been placed at random locations to
form a porous matrix �1	a
L�. The squares are fixed in
space but free to overlap. The only restriction is that their
sides must coincide with the underlying lattice. The remain-
ing, void space is filled with a fluid. The constant, external
force imposed on the porous medium is aligned with the y
axis of an x-y Cartesian coordinate system to model the grav-
ity. Following previous works �12,18�, periodic boundary
conditions have been imposed in both directions to minimize
finite-size effects. Two examples of such porous systems are
depicted in Fig. 1. The dark areas represent fixed solid ob-
stacles, while the white part is occupied by the fluid.

The value of a affects the percolation threshold �c, and
hence is a relevant parameter of the model. Following
�12,18�, in all simulations the parameter a has been set to 10.
With this choice, �c�0.367, which lies between �c
�0.3333 �the continuous percolation threshold of aligned
squares, a→�� �19� and �c�0.4073 �the standard site per-
colation threshold, a=1� �16�.

B. Numerical techniques

Numerical solution of the model defined above consists of
six main steps: �i� generation of a porous matrix of a known
porosity; �ii� solving the flow equations in the low Reynolds
number regime; �iii� finding the flow streamlines; �iv� deter-
mining the tortuosity of the flow; �v� determining the relax-
ation time trel and, if necessary, extrapolating the results to
the stationary solution; and �vi� error analysis.

1. Construction of the porous matrix

A porous matrix of a given porosity � can be generated
using the method of �12,18�. Starting from an empty system,
solid squares are added at random positions until the desired
porosity has been reached. If the system thus generated is not
permeable, it is rejected. The porosity is calculated as the
fraction of unoccupied lattice nodes.

2. Lattice Boltzmann method for solving flow equations

To solve the flow equations, we applied the lattice Boltz-
mann model �LBM� �20� with a single relaxation time colli-
sion operator �21�. This method proved useful in microscopic

a) φ = 0.5 b) φ = 0.8

FIG. 1. An example of two 800�800 �l.u.� l.u.� porous matri-
ces constructed by randomly placed and freely overlapping squares
of size 10�10 �l.u.� l.u.� for two different porosities �.
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model simulations of flow through porous media for various
conditions and flow regimes �2,22�. It is a numerical tech-
nique that rests on the Boltzmann transport equation dis-
cretized both in time and space, and is expressed in terms of
the velocity distribution functions ni in the form

ni
t+1�r + ci� = ni

t�r� + �i
t�r� + Fi, �7�

where i=0, . . . ,8 identifies lattice vectors ci, t is an integer
time step, r denotes a lattice node, �i

t�r� is the collision op-
erator at r, and Fi represents the ith component of the exter-
nal force. We used the time unit �t.u.� equal to the LBM
relaxation time which, in turn, we set equal to one LBM time
step. With this choice, the kinematic viscosity 

=1 /6 l.u.2 / t.u. �20�. This, in turn, simplifies the form of the
collision operator �i

t�r�=ni
eq�r�−ni

t�r� with ni
eq�r� being the

equilibrium value of ni at r. The external force was taken
into account using a method of Ref. �23�: half of the momen-
tum was transferred directly into the equilibrium distribution
function during the collision step, whereas the other half was
included into the transport equation. Because we were inter-
ested in the solution of a slow, laminar flow, we utilized the
equilibrium distribution function ni

eq linearized in the veloc-
ity as

ni
eq = wi��1 + 3�u · ci�� , �8�

in which u is the macroscopic velocity vector and wi are
some weighting coefficients that depend on the lattice struc-
ture and dimension �24,25�.

One problem with the LBM method is that it is incapable
of resolving the macroscopic Navier-Stokes equations for
channels narrower than about four lattice units �20�. This
limitation becomes particularly important at low porosities,
for which the number of very narrow passages increase enor-
mously. To bypass this problem, a standard numerical mesh
refinement procedure was used. Starting from the original
lattice taken to generate the porous matrix, each of its L2

elementary quads were subdivided into kref�kref smaller
quads with kref=1 ,2 , . . . being the refinement level. The re-
sulting krefL�krefL computational grid of vectors r in Eq. �7�
will then be formed from the centers of the small quads. With
this choice, the identification of the interface between the
porous matrix and the free space is facilitated. Note that the
refinement effectively increases the number of the lattice
nodes between any two points by the factor kref, and that the
smallest channel width is kref+1 lattice units.

After initialization, the LBM computational loop of ad-
vection and collision continued for tmax time steps. The cri-
terion for the selection of the value of tmax is discussed in
Sec. III below. By using the midgrid bounce-back rule ap-
plied to the no-slip boundaries, second-order accurate solu-
tions, both in space and time, could be achieved �20�. An
example of the velocity field calculated with this method for
a low-porosity medium is shown in Fig. 2.

3. Flow streamlines

After obtaining the velocity field u at each grid point, the
bilinear interpolation was used to define u�r� at arbitrary
off-grid points r. From this moment u was treated as a con-

tinuous field, and so the streamlines could be obtained by
solving the equation of motion for the trajectories r�t� of
massless particles �26�,

dr

dt
= u�r� . �9�

Due to complex boundary conditions and extreme velocity
variations, the fourth-order Runge-Kutta algorithm with
adaptive time stepping was used �27�.

4. Tortuosity

The tortuosity is defined by Eq. �3� as the ratio of the
average length of all particle path lines passing through a
given cross section during a unit time period to the width of
the sample �1� leading to

T =
1

L

�
A

uy�x���x�dx

�
A

uy�x�dx

, �10�

in which A is an arbitrary cross section of the system per-
pendicular to the y axis, both integrals are to be taken over
all x�A, ��x� is the length of the streamline cutting A at x,
and uy�x� is the component of the velocity field at x�A
normal to A. Since the stream of fluid between any pair of
streamlines is constant in an incompressible flow, both inte-
grals in Eq. �10� are independent of the cross section A.
Moreover, Eq. �10� can be readily generalized to three-
dimensional flows and curved surfaces A.

The integrals in Eq. �10� have been obtained in the litera-
ture either by the Monte Carlo integration �12,18,28� or by
direct quadratures �6�. In the former method, the lengths of
the streamlines passing through randomly chosen points
within the pore volume are averaged using proper weights.
In the latter method T is approximated by the relation

FIG. 2. Velocity magnitudes squared �u2=ux
2+vy

2� calculated on
a 600�600 numerical grid, which corresponds to a 200�200 l.u.
lattice �refinement level kref=3�. The square block sizes were 10
�10 l.u. �i.e., 30�30 nodes after refinement� and the porosity was
�=0.65. Periodic boundary conditions were assumed in both direc-
tions. The plain gray squares represent the solid part of the medium,
whereas the remaining space is open to fluid flow.
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T �
1

L

	
j

uy�xj���xj��xj

	
j

uy�xj��xj

, �11�

where �xj =xj+1−xj are discretization intervals of A. In prin-
ciple, both approaches should yield the same results, but both
can be easily misused. For example, some researchers used
the Monte Carlo integration with streamlines passing through
points chosen randomly from a uniform distribution over the
whole pore space �12,28�, some others calculated streamlines
cutting all lattice nodes �18�, whereas others recorded all
streamlines crossing every lattice node along a chosen inlet
plane �6,13�. However, such “uniform” approaches are not
coherent with the reality of low porosity systems, in which
transport is mostly carried out only through few “conduct-
ing” channels �cf. Fig. 2�. Consequently, the sums in Eq. �11�
contain most probably many terms of practically negligible
magnitudes. To avoid this problem, we used Eq. �11� with a
constant-flux constraint between two neighboring stream-
lines,

uy�xj��xj = const. �12�

The values of xj were calculated from an implicit recursive
formula

�
xj−1

xj

uy�x�dx =
1

N
�

0

L

uy�x�dx, j = 1, . . . ,N , �13�

with x0=0. It should be noted that in case multiple solutions
for Eq. �13� exist, they all correspond to the same streamline,
and hence are equivalent. With this choice, Eq. �11� imme-
diately simplifies to

T �
1

L

1

N	
j=1

N

��xj� , �14�

where N is the number of the streamlines generated. Note
that all terms in this sum are of the same order of magnitude.

Thus, to calculate T, a horizontal cross section A is cho-
sen. Next, the coordinates of the initial points xj are deter-
mined using Eq. �13�, and the corresponding streamlines are
found by solving Eq. �9� in both directions until the solutions
hit the system edges �y=0 and y=L�. Finally, their lengths
are plugged into Eq. �14�.

It should be noted that not all streamlines passing through
xj cut both horizontal edges y=0 and y=L �see Fig. 3�. This
may happen if the streamline generated from xj passes
through a region with extremely low fluid velocity. An ex-
ample is given in Fig. 3, where arrow �a� shows an end point
of an incomplete streamline. Note that this particular stream-
line was generated from a high-velocity region indicated by
arrow �b�. Arrow �c� shows a dead-end pore that coincides
with the cross section A. An advantage of using a constant-
flux constraint is that it minimizes the probability of choos-
ing xj in such stagnant regions.

To bypass the problem of incomplete streamlines, in cal-
culation of the sum �14� only complete streamlines were
taken into account. The error induced by this procedure is
discussed in Sec. III.

5. Extrapolation to the stationary solution

Once the LBM iteration loop has been started, the solu-
tion slowly converges to the required stationary state. To
determine the minimum iteration number required for obtain-
ing the solution, we monitored the temporal evolution of the
tortuosity. It turned out that after the initial stage of t0 time
steps, T�t� could be approximated by

T�t� � Ts − c exp�− t/trel�, t � t0, �15�

where T�t� is defined by Eq. �14�, whereas Ts, c, and trel are
some �-dependent parameters. We used Ts as the tortuosity
at the stationary state and trel as the relaxation time to the
stationary solution. The values of t0 and trel were then used to
estimate the required number of LBM iterations �tmax�.

6. Error analysis

Tortuosity values �T� calculated directly from Eq. �14�
contain errors arising from different sources. While statistical
errors result from randomness in the porous matrix, discreti-
zation errors appear when approximating the integrals in Eq.
�10� by finite sums, and when solving flow equations by
discrete lattices. Finite-size errors could emerge also as a
consequence of approximating a macroscopic system with a
microscopic model. Of highest importance are the errors re-
lated to the slow convergence of the numerical solution to
the stationary state. Details of the error analysis are ad-
dressed in the next section.

III. RESULTS

To begin the discussion, the structure of the integrands in
Eq. �10� is examined. Figure 4 shows uy�x� �relative to its
maximum value uy

max�5�10−5 l.u. / t.u�, the local tortuosity
��x�=��x� /L, their product ��x�uy�x� /uy

max, and the ratio of
the minimum to maximum trial particle speeds for the same
system as in Figs. 2 and 3. All these functions depend highly

(b)

(c)

(a)

FIG. 3. Streamlines generated with the constant-flux constraint
�13� for the same system as in Fig. 2 �N=60�. The horizontal line
represents the cross section y=L /2 on which the initial points xj

were chosen. Arrows: �a� An end point of an incomplete streamline;
�b� the starting point of the incomplete streamline; and �c� a dead-
end pore on the initial cross section.
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on the initial cross section A, and the data for Fig. 4 were
obtained from the streamlines originating at the cross section
y=L /2. As expected, the velocity profile is continuous and
piecewise differentiable, and partially resembling that of a
Poiseuille �parabolic� flow. The negative value of uy near x
=160 indicates that some streamlines are cutting the initial
cross section many times.

In contrast to uy, the local tortuosity � is a discontinuous
function of x �Fig. 4�b��. Each jump in the ��x� plot corre-
sponds to the stream flow splitting into �or merging from�
two parts upon meeting an obstacle. Thus, for a finite-size
system, ��x� is a piecewise continuous function with a cer-
tain number of discontinuities, equal to the number of “is-
lands” existing in the porous domain. Consequently, the
product uy�x���x� is also discontinuous �Fig. 4�c��. Moreover,
the problem of finding the coordinates of discontinuity points
is numerically ill conditioned. These two factors greatly
complicate the determination of the enumerator in Eq. �10�,
and introduce an additional source of errors in Eq. �14�. For
xj near a discontinuity point, even small numerical errors
may result in a significant jump in ��xj�. Two countermea-
sures were taken to reduce the impact of this phenomenon,
which is closely related to the problem of “incomplete
streamlines” discussed in Sec. II B. First, a check is made to
find out how T calculated from Eq. �14� varies with N. Here,
an optimal value of N�L was found. Second, the tortuosity
was calculated as an average over eight different cross sec-
tions. This approach not only reduced the error resulting
from approximating Eq. �10� by Eq. �14�, but also gave some
estimation on its magnitude. The errors were found to be
maximum for low porosities, but even for �=0.45 the stan-
dard error of the mean was less than 0.5%.

The large number of discontinuities in ��x� implies that
the fluid velocity along a typical streamline may vary by

many orders of magnitude. This is shown in Fig. 4�d�, in
which the ratio of the minimum to maximum fluid speed
�umin /umax� along the streamline cutting the cross section y
=L /2 at x is plotted. In this particular case umin /umax	0.26
and drops to 0 at all positions where ��x� became discontinu-
ous. A comparison of panels �a� and �d� in Fig. 4 shows that
streamlines passing through a region with relatively high
fluid velocity will likely hit regions where the fluid is almost
stagnant. For this reason it is essential that Eq. �9� be solved
with a numerical method that uses variable step lengths and
local error control.

Next, we analyzed the convergence speed of the numeri-
cal results to the steady state solution. To this end, the relax-
ation time �trel� was calculated from Eq. �15� for all porosi-
ties investigated. As shown in Fig. 5, trel has a minimum at
��0.6 and grows immediately as � approaches the perco-
lation threshold ��c�0.367� or 1. This rapid growth of the
relaxation time at high porosities is a well-known property of
the standard low Mach number LBM simulations �29�. On
the other hand, a rapid growth of trel as � approaches �c can
be attributed to a growing number of larger and larger dead-
end pores filled with stagnant fluid where the pressure re-
laxes only through diffusion, which is slow.

We found that a typical value of the initial time t0 was
between 500 and 1000 t.u. Hence, using the data from Fig. 5,
we chose the number of LBM iterations as tmax=1.5�104 for
�	0.8 and 3�104 for ��0.8. However, for the porosity
�=0.45 we observed that in several cases t0 was signifi-
cantly larger than 103 t.u. Closer inspection of these atypical
samples revealed that their pores were arranged in a very
special way: they had two conducting channels connected by
another one bent in such a way that part of it was directed
against the external force. Under such conditions the LBM
simulations need a lot of time to distinguish such channels
from nonconductive dead-end pores. Moreover, in such sys-
tems there is no reliable method to ensure that LBM simula-
tions reach the steady state solution. Thus, even though we
took all countermeasures, there is no guarantee that we actu-
ally reached the steady state in all numerical computations,
and so our low-porosity results may still suffer from a small
systematic error, which we estimate to be less than one per-
cent.

Following this, finite-size effects were analyzed. Figure 6
shows the dependency of the tortuosity T on the system size
L for porosities �=0.5, 0.7, and 0.9. The lines represent fits
to
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FIG. 4. The basic quantities that affect tortuosity calculation by
Eq. �10�: �a� Velocity component uy�x� relative to its maximum
value uy

max�5�10−5 l.u. / t.u.; �b� local tortuosity ��x�=��x� /L; �c�
the product ��x�uy�x� /uy

max; and �d� the ratio of the minimum to
maximum speeds along streamlines. All quantities were determined
for the system shown in Fig. 3 with the cross section y=L /2 and the
uniform discretization with N=1200. The tortuosity for this system
is T�1.45.
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FIG. 5. Relaxation time trel as a function of porosity ��� for L
=200 l.u., kref=3, and tmax=30 000 t.u.
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T�L� = T� − b exp�− cL� , �16�

where T�, b, and c are free parameters. These, as well as
many other fits, not shown here, proved to be suitable
enough to estimate the tortuosity of an infinite system T�.
This procedure also enabled us to estimate a characteristic
system length L* above which T does not change signifi-
cantly with L. It turned out that L*�200 for the whole po-
rosity range. In all cases analyzed, T was found to be an
increasing function of L. Thus, it becomes clear that ignoring
finite-size effects and using L�L* would lead to an under-
estimation of T.

Following this, the sensitivity of tortuosity measurements
to the numerical mesh refinement was examined. Figure 7
depicts the values of T�L� for a low-porosity system ��
=0.5� and four refinement levels kref=1 , . . . ,4. Apart from
the case kref=1 and L=50, the variation of T with kref is
practically negligible, especially if compared with the varia-
tion in T related to randomness of the porous matrix �error
bars in Fig. 7�. Thus, as far as calculation of tortuosity is
concerned, the mesh refinement did not seem to be of highest
importance. The value of kref=1 is acceptable, and kref=2
should suffice in most practical situations. This value of kref
is at odds with the criteria, mentioned above, for the LBM
method to reconstruct the Navier-Stokes equations �20�. This
can be explained by noticing that the main contribution to

tortuosity comes from broad channels, for which mesh re-
finement is less important. Such broad channels may not ex-
ist close to the percolation threshold, in which case kref=3
should be used.

After finding the minimal requirements on the mesh re-
finement level kref, the optimal number of time steps tmax, and
the system size L*, the tortuosity-porosity relation could be
determined. For a given �=0.45,0.5, . . . ,0.95, a system size
of L=L* and a refinement level of kref=3 were chosen. At
each �, T was calculated for M porous matrices, with M
ranging from 25 �for �=0.95� to 100 �for �=0.45�, and the
results are shown as cross symbols in Fig. 8. For comparison,
we also plotted the best-fit curves obtained for exactly the
same system by Koponen et al. �18� �see Eq. �6��. Obviously,
the results of Koponen et al. lie significantly below those
obtained by us. This is due to the fact that in the work of
Koponen et al., a rather small system �L�L*� was consid-
ered without analyzing the relaxation time. Hence, the dis-
crepancy can be explained as a consequence of finite-size
effects, large relaxation times, and discretization errors,
which were not analyzed in their study.

We fitted our data to four tortuosity-porosity relations pro-
posed by other researchers as follows:

T��� = �−p, �17a�

T��� = 1 − p ln � , �17b�

T��� = 1 + p�1 − �� , �17c�

T��� = �1 + p�1 − ���2, �17d�

where p is a parameter. The first of them was proposed for
the electric tortuosity by Archie �30�. The second equation
was found, through variational arguments, in several theoret-
ical studies on diffusive transport in porous systems com-
posed of freely overlapping spheres �p=1 /2� �31,32� or vari-
ous arrangements of cylinders �p=1 or p=2 /3� �33�. The
same relation �with p�0.86 and p�1.66� was also reported
in measurements of the hydraulic tortuosity for fixed beds of
parallelepipedal particles with different thickness-to-side ra-
tios �34�, and in recent measurements of electrical tortuosity
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FIG. 6. Tortuosity T as a function of the system size L, for �
=0.5, 0.7, 0.9, averaged over M =25 samples. The lines are the best
fits calculated with Eq. �16�. The error bars represent the standard
error of the mean.
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in fixed beds and suspensions of glass spheres �35�. Equation
�17c� is an empirical relation found for sandy �p=2� or clay-
silt �p=3� sediments �36�. Finally, Eq. �17d�, with p
=32 /9��1.1, was recently obtained in a model of the dif-
fusive tortuosity in marine muds �37�.

Although we treated p in all these formulas as an adjust-
able parameter, only Eq. �17b� gave a satisfactory fit for p
=0.77�0.03. This fit is plotted in Fig. 8 as a solid line. Note
that for large porosities ���0.8� our results are slightly
larger �up to �2%� than the values predicted by Eq. �17b�.
After a closer examination, we found that this phenomenon
is a consequence of applying periodic boundary conditions to
domains having characteristic length scales equal to the sys-
tem size. For example, if L=100 l.u. and �=0.9, the porous
matrix is composed of only ten 10�10 squares. Under such
a condition, the mean flow direction may significantly differ
from the direction of the external force, violating the implicit
assumption used in tortuosity equation �3� stating the paral-
lelism of mean flow velocity and mean pressure gradient.
Understanding the tortuosity as a measure of a mean elonga-
tion of the fluid particles’ path as they move among solid
matrices within a porous medium suggests that for systems
with periodic boundary conditions Eq. �3� should be gener-
alized to

T =
���cos �

L
, �18�

where � is the angle between the mean fluid velocity and the
external force. This equation follows from the approximation
of the mean fluid displacement, as it crosses the medium, by
L /cos �. The two definitions of tortuosity, Eqs. �3� and �18�,
differ by a factor 1 /cos �. We believe that this factor is re-
sponsible for the slight differences between our porosity re-
sults in Fig. 8 and those predicted by Eq. �17b�. Quantita-
tively speaking, this would correspond to �1 /cos ���1.02,
i.e., ����11°, which is a reasonable value for the mean de-
viation of a flow direction in a small system with periodic
boundary conditions. The effect of ��0 appears quite small.
Further detailed studies are thus necessary to understand its
relevance.

The fact that our system obeys Eq. �17b� has a rather
interesting and unexpected consequence. As shown previ-
ously �18�, the specific surface area S �cf. Eq. �2�� in a porous
system composed of freely overlapping obstacles of arbitrary
shape and size in a d-dimensional space satisfies

S = −
d

R
� ln � , �19�

with R denoting hydraulic radius of obstacles �R=a /2 in the
model studied here�. With this, Eq. �17b� simplifies to

T − 1 � R
S

�
. �20�

IV. DISCUSSION AND CONCLUSIONS

As shown by the present study, obtaining hydraulic tortu-
osity from numerical simulations contains many hidden

problems, which may lead to incorrect conclusions. When a
fluid stream hits an obstacle, it splits and then merges, caus-
ing a discontinuity in streamlines. The bounding streamline
of each obstacle separates the two splitting �or merging�
streams. The location of such streamlines is a priori not
known, and the problem of finding the streamlines within
those regions is numerically ill conditioned. If the system is
sufficiently large, it is inevitable that majority of streamlines
pass through such “ill-conditioned” regions. Moreover, the
velocity magnitude along the streamlines can vary by many
orders of magnitude.

At high porosities nearly each obstacle constitutes a sepa-
rate “island.” Although the number of discontinuities in T is
very large, in general they tend to average out. At low po-
rosities, however, severe problems may arise as discontinui-
ties are much fewer in number �which means no “averaging
out”� and larger in magnitude �which results from increased
island sizes�.

The lattice-Boltzmann algorithm turned out adequate for
studying creeping flow through porous media, especially for
intermediate porosities. However, for very high or low po-
rosities it exhibits a large relaxation time to the stationary
solution, which requires special countermeasures, e.g., ex-
trapolation. This is a known drawback of the standard LBM
algorithm at high porosities, whereas for porosities close to
the percolation threshold large relaxation times are inherent
to the problem.

With this study we have demonstrated how sensitive tor-
tuosity computations are to finite-size and slow relaxation
effects, discretization errors, and large variation of fluid
speed along streamlines. The system size must be large
enough to ensure development of chaotic “splitting and
merging” flows, which are characteristic for real granular
systems. When periodic boundary conditions are imple-
mented for porous domains with characteristic length scales
�e.g., a typical pore size�, which are of the same order as the
system size itself, the mean flow direction may deviate from
the direction of the external force. This is an important issue,
and must be considered in the tortuosity calculations. For the
porosities studied here, the mesh refinement did not turn out
to be as effective in reducing discretization error as we ex-
pected. It is far more important to ensure that the numerical
solution has reached the stationary solution, especially for
very high or low porosities. Moreover, our results concerning
large fluid velocity variations along streamlines are a clear
indication for revising those tortuosity definitions which as-
sume a constant fluid velocity along a streamline �6,13�.
They also show that numerical determination of streamlines
requires the use of advanced numerical integrators with
adaptive step lengths and local error control.

When streamlines are generated using the constant-flux
constraint, the tortuosity can be calculated simply as an av-
erage over the streamline lengths. This method reduces the
computation errors and does away with the need for deter-
mining the streamlines in dead-end pores.

Obviously, there is no general relation between porosity
and tortuosity. However, one may hope to establish such re-
lations at least for some classes of porous media. The nu-
merical data presented in this study were found to be in good
agreement with Eq. �17b�, obtained in previous theoretical
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and experimental studies. A common denominator for all of
them is a porous system made of randomly distributed ob-
stacles of equal shape and size. It is thus possible that Eq.
�17b� is valid for a whole class of such porous media. How-
ever, it is also possible that such a tortuosity-porosity depen-
dency in these systems is a coincidence—after all, there are
far more distinct porous systems than simple models to de-
scribe them. It should be also mentioned that Eq. �17b� can-
not be applied close to the percolation threshold, where tor-
tuosity diverges.

Finally, we found that in the model of freely overlapping
squares, a very simple relation �20� holds between tortuosity,

porosity and the specific surface area. This equation is
closely related to Eq. �17b�, and is expected to hold for all
systems made of randomly distributed obstacles of equal
shape and size.
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